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Extension of New Model of the Atom.  The Geometrical Packing Model presented for the
atom and nucleus in parts 1 [6,7] and 2 [7,8] based on the Toroidal Particle Model were
very successful in describing some atomic and nuclear data.  The physical approach
(based on experiment) taken in these papers is more fundamental and straightforward than
the mathematical methods (based on unproven postulates) used by Quantum Mechanics.
The new model does not incorporate any of the objectionable assumptions and postulates
of Quantum Mechanics and replaces those features of the Quantum Models that are
known to be inconsistent or in violation of proven laws.  Unlike the Quantum Models, the
Geometrical Packing Model for ring particles is not simply mathematical, but it is a phys-
ical model with boundaries, sizes and detailed structure that can be verified experimen-
tally. Thus it satisfies one of the major goals of physics which is to physically describe
the matter of the physical universe.

Although the framework of a new theory of matter has been presented, the basic approach
needs to be extended to give successful descriptions of blackbody radiation, the photo-
electric effect, and the energy levels of the atom giving rise to absorption and emission
spectra before it can more fully qualify to displace the Quantum Models.  (Please note that
this work was initially completed in Joseph’s 1994-1995 science fair project “A New
Classical Basis for Quantum Physics” which was awarded a Grand Prize, sponsored by
NASA, at the 1995 International Science and Engineering Fair in Hamilton, Ontario,
Canada.)   The purpose of this third article in the series is to extend the application of the
Ring Model to the emission spectra of atoms.

Abstract.  A physical Geometrical Packing Model for the structure of the atom is
developed based on the physical toroidal Ring Model of elementary particles pro-
posed by Bergman [1].  From the physical characteristics of real electrons from
experiments by Compton [2,3,4] this work derives, using combinatorial geometry,
the number of electrons that will pack into the various physical shells about the
nucleus in agreement with the observed structure of the Periodic Table of the
Elements.  The constraints used in the combinatorial geometry derivation are
based upon simple but fundamental ring dipole magnet experiments and spheri-
cal symmetry.  From a magnetic basis the model explains the physical origin of
the valence electrons for chemical binding and the reason why the Periodic Table
has only seven periods.  The Toroidal  Model is extended in this article to describe
the emission spectra of hydrogen and other atoms.   Use is made of some of the
authors’ standing wave experiments in large toroidal springs.  The resulting model
accurately predicts the same emission spectral lines as the Quantum Model
including the fine structure and hyperfine structure.  Moreover it goes beyond the
Dirac Quantum Model of the atom to predict 64 new lines or transitions in the
extreme ultraviolet emission spectra of hydrogen that have been confirmed by the
Extreme Ultraviolet Physics Laboratory at Berkeley from its NASA rocket experi-
ment data [5].



History of Modern Atomic Data and Theory.  When experimenters of the past examined
the emitted spectra from hot solids and gases, they discovered that solids emit a continu-
ous spectrum of electromagnetic radiation while monoatomic gases emit radiation con-
centrated at a number of discrete wavelengths.  Each of these wavelength components is
called a line, because the
spectroscopes used to
record the spectra on film
employed slits with a prism
to separate the wavelengths
of light or different colored
images of the slit (see
Figure 1).  These spectro-
scopes were only able to
measure those wavelengths
near the range of visible
light.

Experimenters observed patterns in the spectroscopic lines of monoatomic gases like
hydrogen  (see Figure 2).  In these patterns or series of lines the spacing between adjacent
lines of the spectrum continuously decreased with decreasing wavelength of the lines until
it converged at some limit.
A number of these series
were found for hydrogen
gas.  About 1890 Rydberg
[9, pp. 110-113] found an
empirical formula, called
the Rydberg Formula,  that
described these series of
wavelengths as shown in
Table 1.

In 1913, Bohr developed
his Quantum Model, called the Bohr Model, to describe the atom and predict the atomic
line series described so well by Rydberg’s empirical formula.  Bohr’s model was based on
the following postulates [9, p. 114]:

1.  An electron in an atom moves in a circular orbit about the nucleus under the
influence of  the Coulomb attraction between the electron and the nucleus,
and obeying the laws of classical mechanics.

2. But, instead of the infinity of orbits which would be possible in classical
mechanics, it is only possible for an electron to move in an orbit for which its
angular momentum L is an integral multiple of Planck’s constant h divided
by 2π, i.e. L = nh/2π.

Figure 1
Apparatus for Atomic Spectroscopy

[9, pp. 110-113]

Figure 2
Balmer Line Series for Hydrogen

[9, pp. 110-113]



3.  Despite the fact that it is constantly accelerating, an electron moving in such
an allowed orbit does not radiate electromagnetic energy.  Thus its total ener-
gy remains constant.

4.  Electromagnetic energy is emitted if an electron, initially moving in an orbit
of total energy Ei, discontinuously changes its motion so that it moves in an
orbit of total energy Ef.  The frequency of the emitted radiation ν is equal to
the quantity (Ei – Ef) divided by Planck’s constant h, i.e. ν = (Ei - Ef)/h.

Bohr’s postulates were very radical.  They assumed that some electromagnetic laws, such
as Coulomb’s force law held on the microscopic scale, but not Ampere’s law or Faraday’s
law.  Thus the laws of physics were assumed to be different on the microscopic scale than
on the macroscopic scale.  Also, Bohr neglected the finite size of the electron.

The justification for Bohr’s postulates was that they led to a model that produced a math-
ematical equation that predicted the atomic emission line spectra of one-electron atoms.
Logically, however, this type of justification is incomplete.  One must also justify each of
the assumptions or postulates individually.  This was never done.

The success of the Bohr theory was very striking, but the Bohr postulates were somewhat
mysterious.  Also there was the question of the relation between Bohr’s quantization of
the angular momentum of an electron moving in a circular orbit and Planck’s quantization
of the total energy of an entity, such as an electron, executing simple harmonic motion
since both incorporated Planck’s constant h.

In 1916 Wilson and Sommerfeld [9, pp. 128-131] postulated a set of rules for the quanti-
zation of any physical system for which the coordinates are periodic functions of time as
follows:

For any physical system in which the coordinates  are periodic functions
of time, there exists a quantum condition of each coordinate.  These quan-
tum conditions are where q is one of the coordinates, pq is the momentum

Table 1.   Hydrogen Spectral Line Series

Wavelength
Name Range (λλ) Rydberg Formula

Lyman Ultraviolet k = 1/λ = RH [1/(1)
2

- 1/(n)2]   n = 2,3,4,...
Balmer Visible k = 1/λ = RH [1/(2)2 - 1/(n)2]   n = 3,4,5,...
Paschen Infrared k = 1/λ = RH [1/(3)2 - 1/(n)2]   n = 4,5,6,...
Brackett Infrared k = 1/λ = RH [1/(4)2 - 1/(n)2]   n = 5,6,7,...
Pfund Infrared k = 1/λ = RH [1/(5)2 - 1/(n)2]   n = 6,7,8,...

where RH = 109677.576 ! .012 cm
-1

is the Rydberg constant.



associated with that coordinate, nq is the quantum number which takes
on integral values, and % means that the integration is taken over one
period of the coordinate q.

The application of the Wilson-Sommerfeld quantization rule to the coordinate θ where q
= θ and pq = L = mr

2
dθ/dt yields

or

The application of the Wilson-Sommerfeld quantization rule to a particle of mass m exe-
cuting simple harmonic motion with frequency ν yields

Sommerfeld used the Wilson-Sommerfeld quantization rules to evaluate the size and
shape of the allowed elliptical orbits as well as the total energy of the electron moving in
such an orbit.  Describing the motion in terms of the polar coordinates r and θ, he obtained
the quantum conditions

By requiring a condition for mechanical stability, i.e. the centripetal force is equal to the
electrical Coulomb force, a third equation is obtained.  Solving  them simultaneously he
obtained 
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where n is called the principal quantum num-
ber, and nθ is called the azimuthal quantum
number.  The second equation above gives the
shape of the orbit, i.e. the ratio of the semi-
major to the semi-minor axes b/a.  It is deter-
mined by the ratio of nθ to n.  For nθ = n the
orbits are circles of radius a.  Figure 3 shows to
scale the possible orbits corresponding to the
first three values of the principal quantum num-
ber.  Note that for each value of the principal
quantum number n, there are n different
allowed orbits. One of these, the circular orbit,
is the orbit described by the original Bohr the-
ory.  The others are elliptical.

The third equation above indicates that all of
the different possible orbits for a given n have
the same total energy of the electron.  The several orbits characterized by a common value
of n are said to be “degenerate.”  Sommerfeld removed this degeneracy by treating the
problem using relativistic mechanics.  In this approach the size of the relativistic correc-
tion depends on the average velocity of the electron which, in turn, depends on the ellip-
ticity of the orbit.  Sommerfeld’s derivation showed that the total energy of an electron in
an orbit characterized by the quantum numbers n and nθ is given by

where α = 2π e2/hc l 1/137 is called the fine structure constant.

Experimentally, it is observed that transitions only take place between orbitals for which

This condition for orbital transitions is called a “selection rule.”  It states that the change
in angular momentum of the electron orbital must be one unit of angular momentum for
emission and absorption of electromagnetic radiation.  Conservation of angular momen-
tum implies that electromagnetic radiation carries one unit of angular momentum.

This version of quantum theory had a number of notable shortcomings [9, pp. 136-137]:

1. The theory only treats systems which have periodic motion, but there
are many systems which are not periodic.

2. Although the theory allows one to calculate the energies of the allowed

Figure 3
Standing Wave of Bohr Orbits
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states of a system and the frequency of the quanta emitted or absorbed
when the system makes a transition between allowed states, the theory
does not reveal how to calculate the rate at which transitions take place.

3. The theory is only really applicable to one-electron atoms.  The alkali
elements (Li, Na, K, Rb, Cs) can be treated approximately, but only
because they are similar to a one-electron atom.

In 1924 de Broglie [9, pp. 139-141] introduced the idea that particles such as electrons,
alpha particles, billiard balls, etc. display properties characteristic of waves.  De Broglie
postulated that the wavelength λ and the frequency ν of the waves associated with a par-
ticle of momentum p and total relativistic energy E are given by the equations

The requirement that the waves associated with a particle undergoing any sort of period-
ic motion be a set of standing waves is equivalent to the requirement that the motion of
the particle satisfy the Wilson-Sommerfeld quantization rules. The time independent fea-
tures of the standing waves associated with an electron in one of its allowed states in an
atom was used to explain why the motion described by the standing wave does not cause
the electron to emit electromagnetic radiation.  (Note that the fundamental standing
wave in the charge density of charge fibers of the toroidal ring is exactly the de
Broglie wavelength.  The so-called particle-wave duality is only a mystery for point-
like particles.)

The de Broglie postulate says that the motion of a particle is governed by the propagation
of its associated waves, but it does not tell the way in which these waves propagate.  To
handle the case of a particle moving under the influence of forces, we need an equation
that tells how the waves propagate under these more general circumstances.

In 1925 Schrödinger [9, pp. 165-170] developed a propagation equation for matter waves,
called the Schrödinger equation.  It was patterned after the wave equation for strings.  He
denoted the waves by the mathematical wave function ψ(x,t).  Instead of using relativis-
tic kinematics,

Schrödinger used the classical definition of total energy.

The three requirements that Schrödinger felt his equation must satisfy were:

1.  It must be consistent with de Broglie’s postulate and conservation of
energy

2.  The equation must be linear in the wave function ψ(x,t) in order to pre-
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dict the interference phenomena as observed in the Davisson-Germer
experiments

3. The potential energy may be a general function of x and t.

On the basis of these assumptions, Schrödinger postulated the full non-relativistic wave
equation to be

The Schrödinger wave equation contains the imaginary number i.  As a consequence its
solutions are complex (real and imaginary) functions of x and t, i.e. not real functions of
x and t.  Thus the wave function cannot represent the real amplitude of the matter wave
that can be physically measured.  The question of what is waving and in what medium can
not be answered!!  The original wave equations for strings does not contain imaginary
terms, and the real wave function describes the amplitude of the matter wave in the string.

A relationship between the wavefunction ψ(x,t) and the probability of finding the particle
at coordinate x was suggested by Born [10] in 1926 in the form of the following postulate:

“If, at the instant t, a measurement is made to locate the particle associ-
ated with the wave functionψ(x,t), then the probability P(x,t)dx that the
particle will be found at a coordinate between x and x+dx is
such that probability is conserved, i.e.

One problem that the Schrödinger matter wave model has that the Bohr model did not
have is that it predicts the existence of l = 0 or
S states.  Here the electron has no angular
momentum about the nucleus and no mecha-
nism due to orbital motion to keep the
Coulomb force from pulling the electron into
the nucleus.  Thus the Schrödinger matter
wave model denies the Coulomb force for S-
wave electrons, but not for l > 0 electrons.
This is a serious inconsistency in logic. The
relativistic version of the Schrödinger matter
wave equation, called the Dirac Matter Wave
Equation, also has this problem.
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Mechanical Model of a Toroidal

Elementary Particle



New Experiments on Standing Waves in
a Ring. In order to learn more about
standing waves in mechanical rings, a
large metal spring 1.5” in diameter and
12” long (Slinky from James Industries,
Inc. Beaver Street Extension
Hollidaysburg, PA 16648) was obtained
with the two ends fastened together to
form a ring.  The ring was suspended by
100 thin strings 19” long to form a “ring”
with a diameter of 48” (see Figure 4).
When the ring was perturbed by a
metronome pendulum at various frequen-
cies to form standing waves, the very low-
energy standing waves had λ = n(2πR)
and the high-energy standing waves had  λ = (2πR)/n where R = 48” and n = 1, 2, 3, ...
and λ is the wavelength of the standing wave (see Figure 5).

New Classical Derivation of One Electron Atomic Energy Levels. The requirements that
the new classical approach to the energy levels of the atom must satisfy are as follows:

1. Must be based on the proven laws of physics instead of arbitrary postulates.

2. Must maintain the fundamental laws of physics to be the same on all size
scales.

3. Must conserve energy and momentum.

4. Must be consistent with de Broglie’s postulate.

5. Must have stable equilibrium states in agreement with observation.

6. Must be consistent with the Wilson-Sommerfeld quantization rules for stand-
ing waves or stationary states.

7. Must give rise to a real wave equation describing the current density in the
electron ring.

For a one-electron atom the equilibrium configuration
is shown in Figure 6.

Assuming that the mass m of the electron ring is asso-
ciated with the charge of the ring, the condition for the
mechanical stability of the electron ring is from
Newton’s laws and electrodynamics

Figure 5.  Experimental Standing Waves 
in Toroidal Spring

Figure 6
One-Electron ring( )33

2

2

2

R
mv

R
Ze

=



where v is the velocity of the charge in the ring, R is the radius of the ring, and e is the
total charge of the ring.

Now the requirement that the waves associated with a particle undergoing any sort of peri-
odic motion be a set of standing waves is equivalent to the requirement that the motion of
the particle satisfy the Wilson-Sommerfeld quantization rules.  The angular momentum in
the plane of the ring for a free electron is given by Bergman[1,11] 

where 2πR = λo and me = mm = m /2.

For the atom there are standing waves with two or more wavelengths around the circum-
ference of the ring.  In this case

Also it is possible to have standing waves where the standing wave has a wavelength
equal to multiple times the circumference of the ring.  In this case                   

Thus the most general case is 

Equation (33) may be written

So

Now consider the total energy of an atomic electron.  If we define the potential energy to
be zero when the electron is infinitely distant from the nucleus, then the potential energy
V at any finite distance r can be obtained by integrating the energy imparted to the elec-
tron by the Coulomb force acting from infinity to R, i.e.  

The potential energy is negative, because the Coulomb force is attractive.
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The kinetic energy T of the electron can be evaluated from equation (33) to be

The total energy E of the electron is then

From equation (39)

From λν = c and E = hν = hc/λ.  

Note that the condition for standing waves in the ring leads to a quantization of the total
energy of the electron bound to a nucleus of charge Ze.

EXPERIMENTAL CONFIRMATION OF NEW MODEL OF ATOM 

When Rydberg analyzed the hydrogen emission spectrum to obtain his empirical formula
in 1890, the line spectrum data was only available from the near ultraviolet, the visible
and the infrared spectrum.  This situation continued through the time that Bohr (1913)
developed his model of the atom and Schrödinger (1925) and Dirac (1925) developed
their wave equations.

Then in 1991 Labov and Bowyer [5] at the University of California at Berkeley devised a
way to measure the extreme ultraviolet spectrum from 80-650 Angstrom (Å).  They put a
grazing incidence spectrometer on a sounding rocket to get above the earth’s atmosphere.
Flying in the shadow of the earth and pointing away from the sun toward a dark area of
the universe, the spectrometer measured the spectrum from 80 to 650 Å.  Presumably this
part of the universe consists primarily of hydrogen and helium gas.  The spectrum
obtained is shown in Figure 7.  There are a large number of spectral lines or peaks.

The Quantum Theory of the Atom does not predict that there are any spectral lines  from
hydrogen or helium to be observed in this range.  The new classical model of the atom
predicts 64 spectral lines and peaks for hydrogen in this range as shown in Table 2 (at the
end of this paper).  All of the transition lines of Table 2 are found in the spectral data of
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Labov and Bowyer [5].  Furthermore the predicted transitional data accounts for most of
the principal peaks of the observed spectrum as shown in Figure 7.

Multi-Electron Atoms.  The procedures above only apply to one-electron atoms, especial-
ly hydrogen.  In order to treat atoms with more than one electron, it is useful to review the
results of Ampere’s experiments for the forces between current loops [12].

1. The effect of a current is reversed when the direction of the current is
reversed.

2. The effect of a current flowing in a circuit twisted into small sinuosities is
the same as if the circuit were smoothed out.

3. The force exerted by a closed circuit on an element of another circuit is
at right angles to the latter.

4. The force between two elements of circuits is unaffected when all linear
dimensions are increased proportionately and the current strengths
remain unaltered.

The important point to note is that the forces between plain wire loops and wire loops with
small sinuosities is the same.  Figure 8 shows the neon atom consisting of two complete

Figure 7 [5]
Extreme Ultraviolet Spectrum for Helium and Hydrogen

Numbered peaks correspond to hydrogen
spectral lines predicted by new Classical
Theory of the Atom but not Quantum
Mechanics (numbers are keyed to Table 2).



electron shells with the magnetic flux loops for each shell
drawn and the great circles on which they reside.
According to Ampere’s experimental law each magnetic
flux loop may be replaced by a circular wire.  The three
resulting parallel circular loops may be replaced by one
circular loop with the nucleus at the center.  The effective
radius may be different from that of the free electron.
Thus for closed shell atoms, the atom acts effectively as
if it had a single electron ring about the nucleus, just like
the Bohr model for a one-electron atom like hydrogen.

For the rest of the atoms the situation is not as neat.  If the
last outermost electron shell has a number of electrons
divisible by four, the symmetry may reduce to an equiv-
alent ring as above.

For atoms with an odd number of electrons other than 1 and all other cases, the symme-
try may not reduce to a single loop.  Some sort of computer modeling program may be
needed in order to get precise values for the energy levels and absorption and emission
spectra.  (Note that the Quantum Models have problems with these atoms also.)

Fine Structure and Hyperfine Structure in Atomic Spectra.   In the past classical mod-
els of the atom, nucleus and elementary particles were unable to describe certain phenom-
ena such as the atomic spectra fine structure due to electron spin-orbit coupling (quantum
interpretation) and the atomic spectra hyperfine structure due to nuclear-spin electron-
spin coupling, because there was no classical quantity known as the spin of the electron
or nucleon.  In particular the electron was usually modeled as a sphere with a magnetic
moment due to the rotation of charge but no additional quantity called spin.  This situa-
tion has been rectified by the refinement of the Bergman’s [1] Toroidal Model and the
Bostick’s [13,14] Charge Fiber Model of the electron and other elementary particles by
Lucas [15] into a full fledged Classical Electrodynamic Model of Elementary Particles.

According to the Lucas Model all elementary particles are composed of multiple inter-
twined primary charge fibers.  These primary charge fibers may be complex and consist
of multiple intertwined secondary charge fibers.  The secondary charge fibers may also be
complex and consist of multiple tertiary charge fibers.  

In this model the electron is the simplest of all elementary particles.  It consists of three
simple intertwined primary charge fibers in a toroidal shape.  The figures 9, 10, 11,12, 13
below[16] show the n = 1 fundamental or ground state of the electron, the n = 2 first excit-
ed state or harmonic of the fundamental, the n = 3 second excited state or harmonic of the
fundamental.  Also shown are the n = 1/2 and n = 1/3 sub-harmonics of the fundamental.
These latter states are characteristic of continuous rods or springs not discontinuous par-
ticles.  No parallel exists for these latter n = 1/2, 1/3, etc. states in the quantum orbits of
the point electron about the nucleus of the atom.

Figure 8.  Neon Atom.
(Redrawn here to show
symmetrical placement of
inner shell of two electrons.)



The rotation of the three charge fibers about
the thickness of the toroidal ring produces
the spin s of the electron.  The number of the
harmonic in the ring gives the orbital quan-
tum number l.  The total angular momentum
quantum number j = l + s is merely the total
angular momentum of the charge fibers in
the electron.  The fine structure is due to the
“spin-orbit” coupling or the interaction of
the spin angular momentum about the cross section of the toroid with the angular momen-
tum about the circumference of the toroid.  The hyperfine structure is due to the interac-
tion of the sum of the toroidal neutron and proton spins in the nucleus with the spin of the
toroidal electron.

The absorption and emission of light by the atomic electrons is explained by a combina-
tion of macroscopic string theory and macroscopic antenna theory.   A stretched string in
a musical instrument is caused to change its vibration mode from the fundamental to the
first harmonic by plucking it or hitting it at the appropriate place to transfer additional
energy to the vibration.  For the vibrating string this additional energy added to the string
is dissipated as heat and the string returns to the fundamental vibration.  From macroscop-
ic radio antenna theory the wavelength of the radiation emitted is a function of the phys-
ical length of the antenna.  In this manner one gets radiation as harmonics of the funda-
mental length of the antenna and as sub-harmonics of the fundamental length.  Thus this

Electron n = 1

Figure 9
Electron Fundamental or Ground State

Figure 10
Electron 1st Harmonic or Excited State

Figure 11
Electron 2nd Harmonic or Excited State

Figure 12
Electron 1st Subharmonic

Figure 13
Electron 2nd Subharmonic

Electron n = 3Electron n = 2

Electron n = 1/2 Electron n = 1/3



Charge Fiber Model for Elementary Particles and the electron in particular gives a physi-
cal explanation of absorption and emission on finite size electrons in an atom that is supe-
rior to the non-physical explanation of Quantum Mechanics that has no analogy in the
macroscopic world.

Summary.  A new foundation for modern science based upon classical electrodynamics
that has been expanded to allow particles to have finite size in the shape of a ring of charge
composed of charge fibers is presented.  This version of electrodynamics satisfies the rules
of logic that undergird the scientific method.  It is able to describe the emission spectra of
atoms in a logically superior way compared to the politically correct relativistic Quantum
Electrodynamics Theory as developed by Planck, Einstein, and Dirac.  It is logically supe-
rior for the following reasons:

1. A simpler approach—only electrodynamics, no Quantum or Relativity 
theory needed

2. Describes more data—especially the extreme ultraviolet emission spec-
trum of hydrogen

3. No obviously false assumptions or postulates like the point-particle 
assumption

4. Uses fewer postulates

5. Allows the laws of mechanics to hold on all size scales as always 
expected

6. Allows the laws of electrodynamics to hold on all size scales as always 
expected

7. Describes the physical mechanism for absorption and emission of electro-
magnetic energy in terms of the harmonic and sub-harmonics of the 
fundamental vibration/rotation of charge fibers analogous to the way 
that macroscopic antennas work

8. Eliminates the random chance statistical basis of Quantum Mechanics 
in favor of a logical cause-and-effect basis

9. Allows absolute reference frames for all physical phenomena

10. Describes the emission and absorption spectra of multi-electron atoms

This approach, based on logic, leads to an electrodynamic description of the physical uni-
verse based upon the logical laws of cause and effect. It is compatible with the Biblical
view of the universe created and sustained by God via electromagnetic means [17].
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TABLE 2 [5]

PREDICTED SPECTRAL LINES IN THE RANGE 80-650 Å

PEAK RING MODEL PREDICTED OBSERVED
# TRANSITION ORDER WAVELENGTH WAVELENGTH

λ (Å)      λ (Å)

1   k = 1/λ = RH [1/(1/6)2 - 1/(1/5)2] 1st 82.9       85 ! 5
-1/λC Compton He 

Scattered 96.5 96 ! 5
2nd 165.8    165 ! 5
3rd 248.7     246 ! 5
4th 331.6      332 ! 5
5th 414.4      415 ! 5
6th 497.3      498 ! 5
7th 580.2      580 ! 5

2   k = 1/λ = RH [1/(1/5)2 - 1/(1/4)2] 1st 101.3      101 ! 5
-1/λC Compton He                  

Scattered 122.5 122 ! 5
2nd 202.6     202 ! 5
3rd 303.9     303 ! 5
4th 405.2   405 ! 5
5th 506.5  506 ! 5
6th 607.8    608 ! 5

3   k = 1/λ = RH [1/(1/3)2 - 1/(4)2]   1st     102.0      103 ! 5
-1/λC Compton He             

Scattered 123.6      124 ! 5
2nd 204.0      204 ! 5
3rd 305.9      303 ! 5
4th 407.9      408 ! 5
5th 509.9      510 ! 5
6th 615.4      615 ! 5

4   k = 1/λ = RH [1/(1/3)2 - 1/(3)2] 1st 102.6      103 ! 5        
-1/λC Compton He

Scattered 124.4     125 ! 5
2nd 205.1   205 ! 5
3rd 307.7      308 ! 5
4th 410.2      410 ! 5
5th 512.8      513 ! 5
6th 615.4      615 ! 5

5   k = 1/λ = RH [1/(1/3)2 - 1/(2)2] 1st 104.2      103 “ 5        
-1/λC Compton He

Scattered 126.8      129 ! 5
2nd 208.4      209 ! 5
3rd 312.6      311 ! 5
4th 416.8      417 ! 5
5th 521.0      521 ! 5
6th 625.2      625 ! 5



6   k = 1/λ = RH [1/(1/3)2 - 1/(1)2] 1st 114.0      112 ! 5
-1/λC Compton He

Scattered 141.6 140 ! 5
2nd 227.9      228 ! 5
3rd 341.9      342 ! 5
4th 455.9      458 ! 5
5th 569.9      570 ! 5

7   k = 1/λ = RH [1/(1/4)2 - 1/(1/3)2] 1st 130.3      129 ! 5
-1/λC Compton He

Scattered   167.7      168 ! 5
2nd 260.5      260 ! 5
3rd 390.8      390 ! 5
4th 521.0      520 ! 5
5th 651.3      645 ! 8

8   k = 1/λ = RH [1/(1/3)2 - 1/(1/2)2] 1st 182.4      183 ! 5
-1/λC Compton He

Scattered   265.1      265 ! 5
2nd 364.7      367 ! 5
3rd 547.1      547 ! 5

9   k = 1/λ = RH [1/(1/2)2 - 1/(4)2] 1st 232.0      233 ! 5
-1/λC Compton He

Scattered 384.7      385 ! 5
2nd 464.0      465 ! 5

10   k = 1/λ = RH [1/(1/2)2 - 1/(3)2]      1st 234.4      233 ! 5
-1/λC Compton He

Scattered   391.3      390 ! 5
2nd 468.8      470 ! 5

11   k = 1/λ = RH [1/(1/2)2 - 1/(2)2] 1st 243.1      243 ! 5
-1/λC Compton He

Scattered 416.2    415 ! 5
2nd 486.3      486 ! 5

12   k = 1/λ = RH [1/(1/2)2 - 1/(1)2] 1st 303.9      303 ! 5
-1/λC Compton He

Scattered 633.8      634 ! 5
2nd 607.8      603 ! 5

13   k = 1/λC = Helium Resonance Scattered 584.6      584 ! 5




